Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes
نویسندگان
چکیده
SUMOylation of transcription factors and chromatin proteins is in many cases a negative mark that recruits factors that repress gene expression. In this study, we determined the occupancy of Small Ubiquitin-like MOdifier (SUMO)-1 on chromatin in HeLa cells by use of chromatin affinity purification coupled with next-generation sequencing. We found SUMO-1 localization on chromatin was dynamic throughout the cell cycle. Surprisingly, we observed that from G1 through late S phase, but not during mitosis, SUMO-1 marks the chromatin just upstream of the transcription start site on many of the most active housekeeping genes, including genes encoding translation factors and ribosomal subunit proteins. Moreover, we found that SUMO-1 distribution on promoters was correlated with H3K4me3, another general chromatin activation mark. Depletion of SUMO-1 resulted in downregulation of the genes that were marked by SUMO-1 at their promoters during interphase, supporting the concept that the marking of promoters by SUMO-1 is associated with transcriptional activation of genes involved in ribosome biosynthesis and in the protein translation process.
منابع مشابه
The chromatin scaffold protein SAFB1 localizes SUMO-1 to the promoters of ribosomal protein genes to facilitate transcription initiation and splicing
Early steps of gene expression are a composite of promoter recognition, promoter activation, RNA synthesis and RNA processing, and it is known that SUMOylation, a post-translational modification, is involved in transcription regulation. We previously found that SUMO-1 marks chromatin at the proximal promoter regions of some of the most active housekeeping genes during interphase in human cells,...
متن کاملZNF198 Stabilizes the LSD1–CoREST–HDAC1 Complex on Chromatin through Its MYM-Type Zinc Fingers
Histone modifications in chromatin regulate gene expression. A transcriptional co-repressor complex containing LSD1-CoREST-HDAC1 (termed LCH hereafter for simplicity) represses transcription by coordinately removing histone modifications associated with transcriptional activation. RE1-silencing transcription factor (REST) recruits LCH to the promoters of neuron-specific genes, thereby silencing...
متن کاملSUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin.
Posttranslational modification by SUMO elicits a repressive effect on many transcription factors. In principle, sumoylation may either influence transcription factor activity on promoters, or it may act indirectly by targeting the modified factors to specific cellular compartments. To provide direct experimental evidence for the above, not necessarily mutually exclusive models, we analyzed the ...
متن کاملK-bZIP Mediated SUMO-2/3 Specific Modification on the KSHV Genome Negatively Regulates Lytic Gene Expression and Viral Reactivation
SUMOylation is associated with epigenetic regulation of chromatin structure and transcription. Epigenetic modifications of herpesviral genomes accompany the transcriptional switch of latent and lytic genes during the virus life cycle. Here, we report a genome-wide comparison of SUMO paralog modification on the KSHV genome. Using chromatin immunoprecipitation in conjunction with high-throughput ...
متن کاملSumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation.
Despite numerous studies on specific sumoylated transcriptional regulators, the global role of SUMO on chromatin in relation to transcription regulation remains largely unknown. Here, we determined the genome-wide localization of SUMO1 and SUMO2/3, as well as of UBC9 (encoded by UBE2I) and PIASY (encoded by PIAS4), two markers for active sumoylation, along with Pol II and histone marks in proli...
متن کامل